Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine.

نویسندگان

  • Chi-Kit Siu
  • Yuyong Ke
  • Yuzhu Guo
  • Alan C Hopkinson
  • K W Michael Siu
چکیده

The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2''-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalaninew

The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(M)2] , where M = Trp, Tyr, or Phe; the second [Cu(4Cl-tpy)(M)] , where 4Cl-tpy is the tridendate ligand 40-chloro-2,20:60,200-terpyridine. Dissociations of the Cu(II) bis-amino acid complexes produce abunda...

متن کامل

Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms

Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni(2+), Cu(2+) and Zn(2+) with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies...

متن کامل

Electron transfer from aromatic amino acids to guanine and adenine radical cations in pi stacked and T-shaped complexes.

Similar redox properties of the natural nucleobases and aromatic amino acids make it possible for electron transfer (ET) to occur between these sites in protein-nucleic acid complexes. Using DFT calculations, we estimate the ET rate from aromatic amino acid X (X = Phe, His, Tyr and Trp) to radical cations of guanine (G) and adenine (A) in dimers G-X and A-X with different arrangement of the sub...

متن کامل

Density functional theory study of conformation-dependent properties of neutral and radical cationic L-tyrosine and L-tryptophan.

Conformation-dependent properties of L-tyrosine and L-tryptophan in neutral and radical cations were studied by using the density functional theory (DFT) with a new density functional M05-2X. The results are compared with those obtained by using the conventional DFT (B3LYP). Results obtained by both types of DFT were in qualitative accord, including the existence of two conformational subgroups...

متن کامل

Stable gas-phase radical cations of dimeric tryptophan and tyrosine derivatives.

Stable radical cations of dimeric amino acid derivatives of tryptophan and tyrosine were generated by collision-induced dissociation of [Cu(II)(diethylenetriamine)(amino acid derivative)2]*2+. The yields of the dimer radical cations were dependent on both the auxiliary ligand and the tryptophan or tyrosine derivatives used. Amino acid derivatives with an unmodified carboxylic acid group did not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 10 38  شماره 

صفحات  -

تاریخ انتشار 2008